PERIODICITY IN SEQUENCES DEFINED BY LINEAR RECURRENCE RELATIONS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2

Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or po...

متن کامل

On Sequences Defined by Linear

where a, ai, a2> ■ ■ ■ , a* are given rational integers. The purpose of this paper is to investigate the periodicity of such sequences with respect to a rational integral modulus m. Carmichaelî has studied the period for a modulus m whose prime divisors exceed k and are prime to ak. In this paper, I give a solution to the problem without restriction on m. If m is prime to ak the sequence (1) is...

متن کامل

Palindromes in Linear Recurrence Sequences

We prove that for any base b ≥ 2 and for any linear homogeneous recurrence sequence {an}n≥1 satisfying certain conditions, there exits a positive constant c > 0 such that #{n ≤ x : an is palindromic in base b} x1−c.

متن کامل

On Nearly Linear Recurrence Sequences

A nearly linear recurrence sequence (nlrs) is a complex sequence (an) with the property that there exist complex numbers A0,. . ., Ad−1 such that the sequence ( an+d + Ad−1an+d−1 + · · · + A0an )∞ n=0 is bounded. We give an asymptotic Binet-type formula for such sequences. We compare (an) with a natural linear recurrence sequence (lrs) (ãn) associated with it and prove under certain assumptions...

متن کامل

Zeros of linear recurrence sequences

Let f (x) = P0(x)α 0 + · · · + Pk(x)α k be an exponential polynomial over a field of zero characteristic. Assume that for each pair i, j with i 6= j , αi/αj is not a root of unity. Define 1 = ∑kj=0(deg Pj +1). We introduce a partition of {α0, . . . , αk} into subsets { αi0, . . . , αiki } (1 ≤ i ≤ m), which induces a decomposition of f into f = f1 +· · ·+fm, so that, for 1 ≤ i ≤ m, (αi0 : · · ·...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1930

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.16.10.663